data stream:/?de?t? stri?m/
音標(biāo)翻譯:數(shù)據(jù)流。
速記技巧:可以嘗試使用一些速記方法來幫助記憶,比如將“data”看作是“device”(設(shè)備),“stream”看作是“stream”(流),那么整個單詞就可以理解為“設(shè)備在流動數(shù)據(jù)”。此外,還可以通過聯(lián)想記憶法來幫助記憶,比如將“data”和“dust”(灰塵)聯(lián)系起來,想象數(shù)據(jù)就像灰塵一樣在流動。
希望這些信息對您有所幫助!
Data stream:
英文詞源: "data" 意為 "information" 或 "informational material";"stream" 意為 "flow" 或 "current", 因此 "data stream" 意為 "information flow" 或 "information current"。
變化形式: 無特殊變化。
相關(guān)單詞:
1. Data flow: 意為 "information flow" 或 "flow of informational material", 與 data stream 同源。
2. Streamline: 意為 "to make smooth and streamlined", 用于形容物體或流程的簡化、流暢。
3. Current: 意為 "flowing current", 與 data stream 同源,形容流動的狀態(tài)。
4. Flux: 意為 "flowing or changing", 與 data stream 同源,形容變化的狀態(tài)。
5. Information stream: 意為 "stream of information", 與 data stream 同源,強調(diào)信息的流動。
6. Data analytics: 意為 "analysis of informational data", 與 data stream 相關(guān),用于處理和分析數(shù)據(jù)流。
7. Data visualization: 意為 "visual representation of informational data", 與 data stream 相關(guān),用于數(shù)據(jù)可視化的技術(shù)。
8. Stream of consciousness: 意為 "stream of thoughts and feelings", 與 data stream 相關(guān),用于描述信息的流動和人的意識狀態(tài)。
9. Data integration: 意為 "integration of informational data", 與 data stream 相關(guān),用于數(shù)據(jù)整合和數(shù)據(jù)融合的技術(shù)。
10. Data mining: 意為 "mining of informational data for patterns and trends", 與 data stream 相關(guān),用于數(shù)據(jù)挖掘的技術(shù)。
常用短語:
1. data stream processing
2. real-time data analysis
3. streaming analytics
4. continuous data stream
5. data stream mining
6. streaming data science
7. data stream modeling
例句:
1. The company is dedicated to data stream processing and real-time data analysis.
2. Streaming analytics is essential for optimizing business operations in the digital era.
3. Continuous data streams provide valuable insights for decision-making.
4. Data stream mining helps companies identify trends and patterns in vast amounts of data.
5. Data stream modeling is critical for monitoring and predicting future trends in the market.
英文小作文:
Data Streams: The New Frontier of Analytics
In today"s digital age, data streams have become an integral part of our daily lives. From social media to real-time sensor data, information is constantly flowing at an unprecedented rate. This presents a unique challenge for data analysts, as they must now deal with vast amounts of real-time data in a timely and effective manner. Data stream processing, real-time data analysis, streaming analytics, continuous data streams, data stream mining, streaming data science, and data stream modeling are all essential tools in the modern data scientist"s toolbox. These techniques allow for the identification of trends, patterns, and insights that were previously unavailable in traditional batch processing systems. From optimizing business operations to detecting fraudulent activities, data streams have the potential to transform the way we approach analysis and decision-making. As technology continues to advance, we can expect to see more and more applications of data streams in the coming years. Data streams are not just a trend, they are the new frontier of analytics, where speed, accuracy, and innovation converge to create a more informed and sustainable world.