copulas的音標是/?k??pj?l??s/,翻譯為“連接詞,關聯詞”。速記技巧是:理解為主,多加練習。copulas是連接主語或賓語的一類詞,用于表達各種關系,如因果、伴隨、條件等。通過多加練習,可以更好地掌握這些詞的使用方法。
Copulas,意為“連接詞”,在英語中通常指代主語和謂語之間的聯系。以下列出一些常見的copulas及其英文詞源、變化形式以及相關單詞:
1. be (be) - 原詞源來自古英語,意為“存在”。be用作連接詞時,表示主語和謂語之間的聯系,強調兩者之間的依存關系。
2. seem (seem) - 來自古法語sementier,意為“似乎”。seem用作連接詞時,表示主語和謂語之間的假設關系,強調主觀感受。
3. appear (appear) - 來自拉丁語apparere,意為“出現”。appear用作連接詞時,表示主語和謂語之間的出現或存在關系。
4. seem to (seem to) - 這是seem的常用形式,表示主語對某種情況的推測或假設。
5. appear to (appear to) - 這是appear的常用形式,表示主語對某種現象或情況的觀察或感知。
相關單詞:
1. correlation (相關性):這個詞源于拉丁語correlationis,意為“相互關聯”。在語言學中,它通常用來描述兩個或多個變量之間的關聯程度。
2. dependence (依賴性):這個詞源于拉丁語dependencee,意為“依賴于”。在語言學中,它通常用來描述主語和謂語之間的依存關系。
3. coherence (連貫性):這個詞源于拉丁語coherens,意為“聚集在一起”。在語言學中,它通常用來描述句子或篇章的連貫性和一致性。
4. unity (統一性):這個詞源于拉丁語unitas,意為“統一”。在語言學中,它通常用來描述句子或篇章的完整性或統一性。
以上這些單詞都與copulas有關,它們在語言學中有著重要的意義和應用。
常用短語:
1. Gaussian copula: 高斯 copula
2. Skewed distribution: 偏斜分布
3. Dependence measure: 依賴度量
4. Independence test: 獨立性測試
5. Estimator: 估計器
6. Concentration measure: 集中度量
7. Conditional distribution: 條件分布
雙語例句:
1. The data exhibits a strong Gaussian copula structure. (數據呈現出強烈的正態 copula 結構。)
2. The skewed distribution of the data indicates a potential risk of failure. (數據偏斜分布表明存在潛在的失敗風險。)
3. The dependence measure between the two variables is high, indicating a strong correlation. (兩個變量之間的依賴度量很高,表明存在很強的相關性。)
4. The independence test failed to detect any significant correlation between the variables, indicating that they are not independent. (獨立性測試未能檢測到變量之間存在任何顯著的相關性,表明它們不是獨立的。)
5. The estimated parameters of the conditional distribution are crucial for making accurate predictions. (條件分布的估計參數對于做出準確的預測至關重要。)
6. The concentration measure of the data is high, indicating that it is skewed towards the right side. (數據的集中度量很高,表明它偏向右側。)
7. The copula model is a powerful tool for analyzing complex relationships between variables. ( copula 模型是分析變量之間復雜關系的有力工具。)
英文小作文:
The concept of copulas plays a crucial role in many fields of science and engineering, including statistics, machine learning, and finance. It provides a mathematical framework for modeling dependencies between variables, which is essential for understanding complex systems and making accurate predictions.
Copulas are essentially functions that map joint distributions onto marginal distributions, allowing us to capture the relationships between variables in a unified way. Gaussian copulas, for example, are commonly used to model bivariate relationships between two variables, where they provide a convenient way to capture the correlation between them while preserving their independence from other variables.
Skewed distributions and dependence measures are common challenges in real-world data analysis, and copulas provide a flexible and powerful toolbox for addressing these issues. By incorporating concentration measures and other advanced techniques, we can gain a deeper understanding of the structure of data and develop more accurate models for prediction and decision-making purposes.
In conclusion, copulas are essential tools for analyzing complex relationships between variables and provide a valuable framework for addressing real-world challenges in science and engineering.