gemmated 的音標(biāo)為[?d?embme?t?d],基本翻譯為“結(jié)合的,合并的”。速記技巧可以考慮使用發(fā)音相似的單詞或字母組合來(lái)幫助記憶。例如,可以將 gemmated 拆分為 gem 和 mate 兩個(gè)單詞,這樣就可以聯(lián)想到“gem”是寶石的意思,“mate”是伴侶的意思,結(jié)合起來(lái)就是“寶石伴侶”,從而幫助記憶 gemmated 這個(gè)單詞。
Gemmate的英文詞源是“gemma”,意為“寶石”或“結(jié)晶體”。這個(gè)詞來(lái)源于拉丁語(yǔ),意為“寶石”或“結(jié)晶”。Gemmate這個(gè)詞在英語(yǔ)中通常指兩個(gè)或多個(gè)晶體之間的連接或結(jié)合。
變化形式:geminate,由gemma派生而來(lái),意為“復(fù)數(shù)”或“復(fù)音的”。
相關(guān)單詞:
1. gemination:復(fù)音形成,復(fù)數(shù)產(chǎn)生。
2. geminationist:復(fù)數(shù)形成專家。
3. geminationism:復(fù)數(shù)形成的方法或理論。
4. geminate:復(fù)數(shù)的,復(fù)音的。
5. gemination-related:與復(fù)數(shù)形成相關(guān)的。
6. gemmule:寶石般的物質(zhì),復(fù)數(shù)形式的胚胎。
7. gemmulate:寶石般的,復(fù)數(shù)形式的。
8. gemmulate-related:與寶石般的物質(zhì)相關(guān)的。
9. gemmulate-like:類似于寶石般的物質(zhì)。
10. gemmulate-like structure:類似于寶石般的結(jié)構(gòu)。
Gemmate這個(gè)詞在生物學(xué)和地質(zhì)學(xué)中也有應(yīng)用,特別是在描述植物和動(dòng)物的復(fù)數(shù)生殖以及晶體之間的連接。這些單詞反映了gemmate這個(gè)詞在各個(gè)領(lǐng)域中的廣泛應(yīng)用和演變。
常用短語(yǔ):
1. multiply together
2. add up
3. add up to
4. multiply by
5. add up to a sum
6. multiply matrices
7. add vectors
雙語(yǔ)例句:
1. Multiply matrices A and B to get the result C. (矩陣A和B相乘得到結(jié)果C)
2. The sum of the numbers equals to 5. (這些數(shù)字的和等于5)
3. Adding vectors a and b gives c. (向量a和b的和是c)
4. Multiply a by b and you get c. (乘以b得到c)
5. The product of two numbers is 3. (兩個(gè)數(shù)的乘積是3)
6. Adding up the numbers in column A, we get the total in column B. (在列A中加總,得到列B的總和)
7. Multiply A and B and you will get the result C. (乘以A和B,你將得到結(jié)果C)
英文小作文:
Today, we are going to discuss the basic operations of matrix multiplication and addition, which are essential for many mathematical problems in science and engineering. Matrix multiplication is a way to combine two matrices into a new matrix, which can be thought of as multiplying each element of one matrix by each element of another matrix. This operation is widely used in linear algebra, optimization, and other fields of mathematics. On the other hand, matrix addition is a way to combine two matrices by adding their corresponding elements together. This operation is also very useful in many practical problems. In addition, vector addition is another fundamental operation that we need to understand when dealing with mathematical problems involving vectors. These operations are fundamental to many scientific and engineering problems, and it is essential to understand them well in order to solve these problems effectively.