Gauss的音標是/"ɡ??z/,基本翻譯是高斯,速記技巧可以考慮用字母代替。
英文單詞“Gauss”的詞源是德語,意為“高斯”。它的變化形式包括復(fù)數(shù)“Gauss”和過去式、過去分詞“Gaussed”和現(xiàn)在分詞“Gaussing”。
相關(guān)單詞:1)Gaussian elimination(高斯消元法):這是一種在代數(shù)方程組求解中常用的方法。2)Gauss-Seidel method(高斯-塞貝克方法):一種迭代方法,用于求解線性方程組。3)Gauss law(高斯定律):在電磁學(xué)中,描述電荷如何產(chǎn)生電場的基本定律。4)Gauss point(高斯點):在數(shù)值分析中,用于計算散度或梯度等物理量的點。5)Gauss map(高斯映射):在動力系統(tǒng)中,描述系統(tǒng)行為的一種重要工具。6)Gauss curvature(高斯曲率):在幾何學(xué)中,描述曲線或曲面彎曲程度的概念。7)Gauss-Bonnet theorem(高斯-博內(nèi)定理):在幾何學(xué)中,描述閉曲面的曲率和與其所在空間的拓撲類型之間的關(guān)系。8)Gauss-Dickey equation(高斯-迪凱方程):一種描述地球物理現(xiàn)象的偏微分方程。9)Gauss-Riemann metric(高斯-黎曼度量):在數(shù)學(xué)中,用于描述向量空間上的內(nèi)積。10)Gaussian distribution 分布,指的是高斯分布,是一種在統(tǒng)計學(xué)中常見的概率分布形式。
以上這些單詞都與“Gauss”這個英文單詞相關(guān),它們在不同的領(lǐng)域中有著廣泛的應(yīng)用。
常用短語:
1. Gaussian elimination 伽羅華消元法
2. Gaussian curve 高斯曲線
3. Gaussian distribution 高斯分布
4. Gaussian filter 高斯濾波器
5. Gaussian process 高斯過程
6. Gaussian random variable 高斯隨機變量
7. Gaussian sum 高斯和
8. Gaussian wave 高斯波
例句:
1. We used Gaussian elimination to solve the system of equations.
2. The data points were fit well by a Gaussian curve.
3. The data follows a Gaussian distribution, with most of the points clustered around the mean.
4. The image was filtered using a Gaussian filter to reduce noise.
5. The output of a Gaussian process model is a probability distribution over the unknown variable.
6. The sum of the numbers in the set follows a Gaussian random variable.
7. The wave in the ocean follows a Gaussian wave equation.
英文小作文:
Gaussian Processes in Machine Learning
Machine learning has revolutionized many fields of research, from pattern recognition to optimization problems. One such powerful tool is Gaussian processes, which have found applications in various domains, including computer vision, speech recognition, and more.
Gaussian processes are nonparametric models that allow us to represent a distribution over the unknown function using a set of training data. They are particularly useful for regression problems where we need to predict the output of a function based on its input values. By using Gaussian processes, we can learn a function that best fits the data and make predictions based on it.
Gaussian processes are also useful for classification problems where we need to assign a probability to each class based on the input features. By using Gaussian processes, we can learn a classifier that assigns probabilities to classes based on the input features and make predictions using these probabilities.
In addition to regression and classification problems, Gaussian processes have also found applications in other areas such as time series analysis and optimization problems. They are flexible models that can be easily adapted to different scenarios and provide accurate predictions and solutions to various problems.